Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system

نویسندگان

  • Jia Shi
  • Furong Gao
  • Tie-Jun Wu
چکیده

To improve stability and convergence, feedback control is often incorporated with iterative learning control (ILC), resulting in feedback feed-forward ILC (FFILC). In this paper, a general form of FFILC is studied, comprising of two feedback controllers, a state feedback controller and a tracking error compensator, for the robustness and convergence along time direction, and an ILC for performance along the cycle direction. The integrated design of this FFILC scheme is transformed into a robust control problem of an uncertain 2D Roesser system. To describe the stability and convergence quantitatively along the time and the cycle direction, the concepts of robust stability and convergence along the two axes are introduced. A series of algorithms are established for the FFILC design. These algorithms allow the designer to balance and choose optimization objectives to meet the FFILC performance requirements. The applications to injection molding velocity control show the good effectiveness and feasibility of the proposed design methods. 2005 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional Iterative Learning Control for Batch Processes With State Delay and Time-varying Uncertainties

Based on a two-dimensional (2D) system description of a batch process, a robust closed-loop iterative learning control (ILC) scheme is proposed for batch processes with time-varying uncertainties. An important merit is that the proposed ILC method can be used for on-line optimization against batchto-batch process uncertainties to realize robust tracking of the setpoint trajectory in both the ti...

متن کامل

Robust Iterative Learning Control for Linear Discrete- Time Switched Systems

This chapter aims to study the problem of stability analysis, and robust exponential stabilization for a class of switched linear systems with polytopic uncertainties is reviewed. A sufficient condition based on the average dwell time that guarantees the exponential stability of uncertain switched linear systems is given. First, the iterative learning control is presented to build a formulation...

متن کامل

Iterative learning identification and control for dynamic systems described by NARMAX model

A new iterative learning controller is proposed for a general unknown discrete time-varying nonlinear non-affine system represented by NARMAX (Nonlinear Autoregressive Moving Average with eXogenous inputs) model. The proposed controller is composed of an iterative learning neural identifier and an iterative learning controller. Iterative learning control and iterative learning identification ar...

متن کامل

Perfect Tracking of Supercavitating Non-minimum Phase Vehicles Using a New Robust and Adaptive Parameter-optimal Iterative Learning Control

In this manuscript, a new method is proposed to provide a perfect tracking of the supercavitation system based on a new two-state model. The tracking of the pitch rate and angle of attack for fin and cavitator input is of the aim. The pitch rate of the supercavitation with respect to fin angle is found as a non-minimum phase behavior. This effect reduces the speed of command pitch rate. Control...

متن کامل

A New Robust Control Design Based on Feedback Compensator for Sssc

In this paper, the modified linearized Phillips-Heffron model is utilized to theoretically analyze asingle-machine infinite-bus (SMIB) installed with SSSC. Then, the results of this analysis are used forassessing the potential of an SSSC supplementary controller to improve the dynamic stability of apower system. This is carried out by measuring the electromechanical controllability through sing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015